Electronegativity is a chemical property which describes how well an atom can attract an electron to itself. Values for electronegativity run from 0 to 4. Electronegativity is used to predict whether a bond between atoms will be ionic or covalent. It can also be used to predict if the resulting molecule will be polar or nonpolar. This table is a list of electronegativity values of the elements.
Table of Electronegativity Values
Download the PDF of this table to view this list in periodic table form.
NUMBER | SYMBOL | ELEMENT | ELECTRONEGATIVITY |
1 | H | Hydrogen | 2.20 |
2 | He | Helium | no data |
3 | Li | Lithium | 0.98 |
4 | Be | Beryllium | 1.57 |
5 | B | Boron | 2.04 |
6 | C | Carbon | 2.55 |
7 | N | Nitrogen | 3.04 |
8 | O | Oxygen | 3.44 |
9 | F | Fluorine | 3.98 |
10 | Ne | Neon | no data |
11 | Na | Sodium | 0.93 |
12 | Mg | Magnesium | 1.31 |
13 | Al | Aluminum | 1.61 |
14 | Si | Silicon | 1.90 |
15 | P | Phosphorus | 2.19 |
16 | S | Sulfur | 2.58 |
17 | Cl | Chlorine | 3.16 |
18 | Ar | Argon | no data |
19 | K | Potassium | 0.82 |
20 | Ca | Calcium | 1.00 |
21 | Sc | Scandium | 1.36 |
22 | Ti | Titanium | 1.54 |
23 | V | Vanadium | 1.63 |
24 | Cr | Chromium | 1.66 |
25 | Mn | Manganese | 1.55 |
26 | Fe | Iron | 1.83 |
27 | Co | Cobalt | 1.88 |
28 | Ni | Nickel | 1.91 |
29 | Cu | Copper | 1.90 |
30 | Zn | Zinc | 1.65 |
31 | Ga | Gallium | 1.81 |
32 | Ge | Germanium | 2.01 |
33 | As | Arsenic | 2.18 |
34 | Se | Selenium | 2.55 |
35 | Br | Bromine | 2.96 |
36 | Kr | Krypton | 3.00 |
37 | Rb | Rubidium | 0.82 |
38 | Sr | Strontium | 0.95 |
39 | Y | Yttrium | 1.22 |
40 | Zr | Zirconium | 1.33 |
41 | Nb | Niobium | 1.6 |
42 | Mo | Molybdenum | 2.16 |
43 | Tc | Technetium | 1.9 |
44 | Ru | Ruthenium | 2.2 |
45 | Rh | Rhodium | 2.28 |
46 | Pd | Palladium | 2.20 |
47 | Ag | Silver | 1.93 |
48 | Cd | Cadmium | 1.69 |
49 | In | Indium | 1.78 |
50 | Sn | Tin | 1.96 |
51 | Sb | Antimony | 2.05 |
52 | Te | Tellurium | 2.1 |
53 | I | Iodine | 2.66 |
54 | Xe | Xenon | 2.6 |
55 | Cs | Cesium | 0.79 |
56 | Ba | Barium | 0.89 |
57 | La | Lanthanum | 1.10 |
58 | Ce | Cerium | 1.12 |
59 | Pr | Praseodymium | 1.13 |
60 | Nd | Neodymium | 1.14 |
61 | Pm | Promethium | 1.13 |
62 | Sm | Samarium | 1.17 |
63 | Eu | Europium | 1.2 |
64 | Gd | Gadolinium | 1.2 |
65 | Tb | Terbium | 1.22 |
66 | Dy | Dysprosium | 1.23 |
67 | Ho | Holmium | 1.24 |
68 | Er | Erbium | 1.24 |
69 | Tm | Thulium | 1.25 |
70 | Yb | Ytterbium | 1.1 |
71 | Lu | Lutetium | 1.27 |
72 | Hf | Hafnium | 1.3 |
73 | Ta | Tantalum | 1.5 |
74 | W | Tungsten | 2.36 |
75 | Re | Rhenium | 1.9 |
76 | Os | Osmium | 2.2 |
77 | Ir | Iridium | 2.2 |
78 | Pt | Platinum | 2.28 |
79 | Au | Gold | 2.54 |
80 | Hg | Mercury | 2.00 |
81 | Tl | Thallium | 1.62 |
82 | Pb | Lead | 2.33 |
83 | Bi | Bismuth | 2.02 |
84 | Po | Polonium | 2.0 |
85 | At | Astatine | 2.2 |
86 | Rn | Radon | no data |
87 | Fr | Francium | 0.7 |
88 | Ra | Radium | 0.89 |
89 | Ac | Actinium | 1.1 |
90 | Th | Thorium | 1.3 |
91 | Pa | Protactinium | 1.5 |
92 | U | Uranium | 1.38 |
93 | Np | Neptunium | 1.36 |
94 | Pu | Plutonium | 1.28 |
95 | Am | Americium | 1.3 |
96 | Cm | Curium | 1.3 |
97 | Bk | Berkelium | 1.3 |
98 | Cf | Californium | 1.3 |
99 | Es | Einsteinium | 1.3 |
100 | Fm | Fermium | 1.3 |
101 | Md | Mendelevium | 1.3 |
102 | No | Nobelium | 1.3 |
103 | Lr | Lawrencium | no data |
104 | Rf | Rutherfordium | no data |
105 | Db | Dubnium | no data |
106 | Sg | Seaborgium | no data |
107 | Bh | Bohrium | no data |
108 | Hs | Hassium | no data |
109 | Mt | Meitnerium | no data |
110 | Ds | Darmstadtium | no data |
111 | Rg | Roentgenium | no data |
112 | Cn | Copernicium | no data |
113 | Nh | Nihonium | no data |
114 | Fl | Flerovium | no data |
115 | Mc | Moscovium | no data |
116 | Lv | Livermorium | no data |
117 | Ts | Tennessine | no data |
118 | Og | Oganesson | no data |
References
- Mullay, J. (1987). “Estimation of atomic and group electronegativities”. Electronegativity. Structure and Bonding. Vol. 66. pp. 1–25. ISBN 978-3-540-17740-1. doi:10.1007/BFb0029834
- Sanderson, R. T. (1983). “Electronegativity and bond energy”. Journal of the American Chemical Society. 105 (8): 2259–2261. doi:10.1021/ja00346a026