Elastic collisions are collisions between objects where both momentum and kinetic energy are conserved. This elastic collision example problem will show how to find the final velocities of two bodies after an elastic collision.
This illustration shows a generic elastic collision between two masses A and B. The variables involved are
mA is the mass of the object A
VAi is the initial velocity of the object A
VAf is the final velocity of the object A
mB is the mass of the object B
VBi is the initial velocity of the object B and
VBf is the final velocity of the object B.
If the initial conditions are known, the total momentum of the system can be expressed as
total momentum before collision = total momentum after collision
or
mAVAi + mBVBi = mAVAf + mBVBf
The kinetic energy of the system is
kinetic energy before collision = kinetic energy after collection
½mAVAi2 + ½mBVBi2 = ½mAVAf2 + ½mBVBf2
These two equations can be solved for the final velocities as
and
If you’d like to see how to get to these equations, see Elastic Collision of Two Masses – It Can Be Shown Exercise for a step by step solution.
Elastic Collision Example Problem
A 10 kg mass traveling 2 m/s meets and collides elastically with a 2 kg mass traveling 4 m/s in the opposite direction. Find the final velocities of both objects.
Solution
First, visualize the problem. This illustration shows what we know of the conditions.
The second step is to set your reference. Velocity is a vector quantity and we need to distinguish the direction of the velocity vectors. I’m going to choose from left to right as the “positive” direction. Any velocity moving from right to left will then contain a negative value.
Next, identify the known variables. We know the following:
mA = 10 kg
VAi 2 m/s
mB = 2 kg
VBi = -4 m/s. The negative sign is because the velocity is in the negative direction.
Now we need to find VAf and VBf. Use the equations from above. Let’s start with VAf.

Plug in our known values.



VAf = 0 m/s
The final velocity of the larger mass is zero. The collision completely stopped this mass.
Now for VBf

Plug in our known values




VBf = 6 m/s
Answer
The second, smaller mass shoots off to the right (positive sign on the answer) at 6 m/s while the first, larger mass is stopped dead in space by the elastic collision.
Note: If you chose your frame of reference in the opposite direction in the second step, your final answer will be VAf = 0 m/s and VBf = -6 m/s. The collision does not change, only the signs on your answers. Make sure the velocity values you use in your formulas match your frame of reference.